Appendix

- Typical 1960 SE-amplifiers
- Data of the valves used (ECC83, EL34)
- Audio Precision plots of some of the measurements on the amplifier described in this paper

Two diagrams showing typical SE-amplifiers from the late fifties.

The upper, from a TELEFUNKEN tape recorder, 1960, could deliver 3 Watts at 10% distortion to the speakers and the lower, from a REVOX tape recorder, 1957, could provide 5 Watts at 10% distortion. Both have adjustable tone-correction networks in the NFB path.

The only share low output power with a modern high-quality SE amplifier as the one described.

EL 34		$V_a = V_{g_2} =$	250 V 265 V	I_a		100 15	$S = R_i = R_s = R_s$	11 mA/V 15 kΩ 2 kΩ		
Class A final amplifier	'	$V_{g_3} = V_{g_3} =$	13.5 V 0 V	I_{g2}	=	15	$ \begin{array}{ccc} \widetilde{R}_a & = \\ \widetilde{W}_o & = \\ \widetilde{W}_a & = \end{array} $	11 W 25 W		
EL 34 Output pentode Class AB push-pull amplifier Class B push-pull amplifier	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ V_b = R_{g2}^1) = R_k = V_{g3} = $	375 V 470 Ω 130 Ω 0 V	I _{amin} I _{amax} I _{g2min} I _{g2max}	= = =	2× 75 2× 95 2×11.5 2×22.5	$R_{aa} = W_o =$	4 kΩ 37 W	g2_g1	Ø ®
		425 V 1 kΩ -38 V 0 V	I _{amin} I _{amax} I _{g2min} I _{g2max}	=======================================	2× 30 2× 120 2× 4.4 2× 25	$R_{aa} = W_o =$	3.4 kΩ 55 ₩	1 93 k		
		$V_{ba} = V_{bge} = V_{g1} = R_{g2} = V_{g3} = V_{g3} = V_{g3}$	800 V 400 V 39 V 750 Ω 0 V	$I_{a\min}$ $I_{a\max}$ $I_{g2\min}$ $I_{g2\max}$	=	2× 25 2× 91 2× 3 2× 19	R _{aa} = W _o =	kΩ 100 W	Octal .	

EL 34 6 CA 7	Aligemeine Daten General Data	Kenn- und Betrlebsdaten Characteristics and Typical	Grenzdaten Maximum Ratings		
Endpentode Verwendung für Kraftverstärker Power Pentode for Power Amplifier	Helzung Heating Uf = 6.3 V If = 1.5 A Indirekt indirect	Betriebsdaten Typical Operation Eintakt A Class A $U_b = 265$ $U_d = 250$ $R_{g_2} = 2$ $U_{g_3} = 0$ $U_{g_1} = -14,5$	265 V 250 V 0 kΩ 0 V -13,5 V	$\begin{array}{rcl} U_{a \mathbf{kalt}} &=& 2000 \text{ V} \\ U_{a} &=& 800 \text{ V} \\ Q_{a} \left(U_{g_{1}} \sim = 0 \right) \\ &=& 25 \text{ W} \right) \\ Q_{a} \left(U_{g_{1}} \sim > 0 \right) \\ &=& 27,5 \text{ W} \\ U_{g_{2} \mathbf{kalt}} &=& 800 \text{ V} \\ U_{g_{2}} &=& 425 \text{ V} \\ Q_{g_{2}} &=& 8 \text{ W} \end{array}$	
Oktal Kolben Nr. 23 Bulb No. 23	Kapazitāten Capacitances Ceing — 15,5 pF Causg — 7,2 pF Cag ₁ < 1,0 pF Cg ₂ < 1,0 pF Ckf — 11 pF	$I_{a} = 70$ $I_{g_{2}} - 10$ $S - 9,0$ $R_{i} = 18$ $R_{a} = 3,0$ $U_{g_{1}} - 9,3$ $N_{n} = 8$ $k = 10$ $U_{g_{1}} N_{n} (= 50 \text{ mW})$ $= 0,65$ $\mu_{g_{2}g_{1}} = 11$	100 mA 14,9 mA 11 mA/V 15 kΩ 2,0 kΩ 8,7 V _{eff} 11 W 10 %	I_k = 150 mA R_{g_1} = 0,7 M Ω^* R_{g_1} = 0,5 M Ω^{**} $U_f k$ = 100 V $R_f k$ = 20 k Ω * Kl. A und AB ** Kl. B	

Data of the EL34 taken form from the Philips pocket-book 1958 and the Siemens pocket book 1964, the only data available to me at that time. The next pages from Philips gives a little more detailed information of the valves.

While numerous application notes from various valve manufacturers on optimising push-pull stages exist, no such are to the best of knowledge given for SE-stages.

A.F. DOUBLE TRIODE

Double triode intended for use as A.F. amplifier.

QUICK REFER			
Anode current	I _a	1.2	mA
Transconductance	S	1.6	mA/V
Amplification factor	μ	100	_

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage Heater current
 Vf
 6.3
 12.6
 V

 If
 300
 150
 mA

 pins
 9-(4+5)
 pins
 4-5

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

REMARK

With V_f applied to pins 9 and 4+5 and the centre tap of the heater transformer connected to earth, the triode section connected to pins 6, 7 and 8 is the more favourable section of the tube with respect to hum.

January 1970

1

CAPACITANCES	
Grid to all except anode	$C_{g(a)}$ 1.6 pF
	^C g'(a') 1.6 pF
Anode to all except grid	C _{a(g)} 0.33 pF
	$C_{a'(g')}$ 0.23 pF
Anode to grid	C _{ag} 1.6 pF
	Ca'g' 1.6 pF
Grid to heater	C _{gf} max. 0.15 pF
	Cg'f max. 0.15 pF
Anode to anode	Caa' max. 1.2 pF
Anode to grid other unit	Cag' max. 0.11 pF
Grid to anode other unit	C _{ga'} max. 0.1 pF
Grid to grid	Cgg' max. 0.01 pF
TYPICAL CHARACTERISTICS	
Anode voltage	V _a 100 250 V
Grid voltage	V_g -1.0 -2.0 V
Anode current	I _a 0.5 1.2 mA
Transconductance	S 1.25 1.6 mA/V
Amplification factor	μ 100 100 -
Internal resistance	R_i 80 62.5 k Ω

2

January 1970

3

OPERATING CHARACTERI As A.F. amplifier, one uni	Q	01µF	TI),01µF		
and the second		11-1			11-1	7	
		Vi	₹§ ,	\$ <u>u</u>	V WR	¹₀ ≸Rç	2' Vo
		<u> </u>	≧≶ R _k	* \$ \$ -	<u></u>	ا ان	
		<u> </u>				7206062	- ŏ
Supply voltage	v_b	200	250	300	350	400	v
Anode resistor	Ra	47	47	47	47	47	kΩ
Grid resistor next stage	R _g ,	150	150	150	150	150	kΩ
Cathode resistor	R_k	1500	1200	1000	820	680	Ω
Anode current	Ia	0.86	1.18	1.55	1.98	2.45	mA
Voltage gain	V_{o}/V_{i}	34	37.5	40	42.5	44	-
Output voltage ($I_g = 0.3 \mu A$)	v _o	18	23	26	33	37	v_{RMS}
Total distortion	d_{tot}	8.5	7.0	5.0	4.4	3.6	%
Supply voltage	v_{b}	200	250	300	350	400	v
Anode resistor	R_a	100	100	100	100	100	kΩ
Grid resistor next stage	R _g ,	330	330	330	330	330	kΩ
Cathode resistor	R_k	1800	1500	1200	1000	820	Ω
Anode current	I _a	0.65	0.86	1.11	1.40	1.72	mA
Voltage gain	v_o/v_i	5 0	54.5	57	61	63	-
Output voltage ($I_g = 0.3 \mu A$)	v_o	20	26	30	36	38	v_{RMS}
Total distortion	d_{tot}	4.8	3.9	2.7	2.2	1.7	%
Supply voltage	v_b	200	250	300	350	400	v
Anode resistor	R_a	220	220	220	220	220	kΩ
Grid resistor next stage	$R_{oldsymbol{g}^{oldsymbol{r}}}$	680	680	680	680	680	kΩ
Cathode resistor	$R_{\mathbf{k}}$	3.3	2.7	2.2	1.5	1.2	kΩ
Anode current	I _a	0.36	0.48	0.63	0.85	1.02	mA
Voltage gain	v_o/v_i	56	66.5	72	75.5	76.5	-
Output voltage ($I_g = 0.3 \mu A$)	v_o	24	28	36 -	- 37	38	v_{RMS}
Total distortion	d _{tot}	4.6	3.4	2.6	1.6	1.1	%

January 1970

Anode voltage	v_{a_0}	max. 550	V
	v_a	max. 300	V
Anode dissipation	w_a	max. 1	W
Cathode current	I_k	max. 8	mA
Grid voltage	$-v_{\mathbf{g}}$	max. 50	V
Grid resistor (automatic bias)	$R_{\mathbf{g}}$	max. 2	МΩ
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max. 180	V
Cathode to heater circuit resistance in phase splitting circuits	Rkf	max. 150	kΩ

REMARK

Microphony and hum

This tube can be used without special precautions against microphony in equipment in which the input voltage $V_i \geq 5$ mV for an output of 50 mW (or 50 mV for an output of 5 W) provided the average acceleration of the tube is not greater than indicated in the section "Microphonic effect" of the "Application directions". In this case the disturbance level for hum and noise will be better than -60 dB when the centre tap of the heater has been earthed, $R_g \leq 0.5$ M Ω and the cathode resistor is sufficiently decoupled.

January 1970

5

PHILIPS

EL34

OUTPUT PENTODE PENTHODE DE SORTIE ENDPENTODE

Heating:

indirect by A.C. or D.C.;

parallel supply

Heizung:

Chauffage: indirect par C.A. ou C.C.; alimentation en parallèle

indirekt durch

Wechsel-

oder Gleichstrom;

Parallelapeiaung

Dimensions in mm Dimensions en mm Abmessungen in mm

Base OCTAL Culot Sockel

Capacitances Capacités Kapazitäten

Socket Support 5903/13 Fassung

 $C_{g1} = 15.2 pF$ $c_a =$ 8,4 pF Cag1 (1,1 pF Cg1f 4 1,0 pF Ckf = 10 pF

When using a sinusoidal input signal care Remark should be taken not to exceed the maximum admissible Wg2.

Observation En cas d'un signal d'entrée sinusoïdal il faut faire attention à ne pas dépasser la valeur maximum admissible de Wg2.

Bemerkung Bei Verwendung eines sinusförmigen Eingangssignales muss darauf geachtet werden dass der maximal zulässige Wert von Wg2 nicht überschritten wird.

EL 34

PHILIPS

Operating characteristics class A Caractéristiques d'utilisation classe A Betriebsdaten Klasse A

Vb	100	265	205	V
Va	=	250	250	v
Rg2		2	0	kΩ
Vg3	72	0	0	v
Vg1	=	-14,5	-13,5	V
Ia	=	70	100	mA
Ig2	12	10	14,9	m.A.
s	=	9,0	11	mA/V
µg2g1	=	11	11	
R1	=	18	15	kΩ
Ra	200	3,0	2,0	kΩ
Vi.	=	9,3	8,7	$v_{\tt eff}$
Wo .	` =	8	11	W
dtot	=	10	10	%
$V_{i} (W_{0} = 50 \text{ mW})$	18	0,65	5 و ٥	Veff

200

nee

Operating characteristics class B Caractéristiques d'utilisation classe B Betriebsdaten Klasse B

Rg2	=		1000			470		ο ₁)
Vg1	=		-38			-32		v
Vg3	=		. 0			, 0		V
Vi	=	0	27	27	0	22,7	22,7	v_{eff}
Raa	2	_	3,4	4,0	-	2,8	3,8	kΩ
٧b	=	425	425	400	375	375	350	٧
Va.	=	420	400	375	370	350	325	٧
Ia	=	2x30	2x120	2x100	2x35	2x120	2x93	mA
Ig2	=	2x4,4	2x25	2x25	2x4,7	2x25	2x25	mA
Wo	=	0	55	45	0	44	36	W
dtot	=	-	5	6	-	5	6	%

⁾Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

2.

EL 34

PHILIPS

EL 34 PHILIPS

Performance of the standard single-end pentode output stage according to recommendations from the table. Note that distortion, d, exceeds 10% at 8W

1W no NFB

1W 10 dB of NFB

Frequency response at 1W with and without NFB

```
AGEN FREQ AMPL

10.000 Hz 0.3

12.500 Hz 0.3

16.000 Hz 0.2

20.000 Hz 0.1

25.000 Hz 0.0

31.500 Hz 0.0

40.000 Hz 0.0
                                                                                                                                       AGEN FREQ AMPL A 6.3000kHz -0.04 dBr 8.0000kHz -0.06 dBr 10.000kHz -0.09 dBr 12.500kHz -0.14 dBr
                                                                   AGEN FREQ AMPL A
250.00 Hz 0.00 dBr
315.00 Hz 0.00 dBr
400.00 Hz 0.00 dBr
                               0.30 dBr
0.31 dBr
0.22 dBr
0.14
                                0.14
0.09
0.05
                                              dBr
dBr
dBr
                                                                    500.00 Hz
630.00 Hz
800.00 Hz
                                                                                                    0.00 dBr
                                                                                                                                       12.500kHz -0.14 dBr

16.000kHz -0.22 dBr

20.000kHz -0.33 dBr

25.000kHz -0.85 dBr

40.000kHz -1.46 dBr

50.000kHz -2.66 dBr

63.000kHz -5.50 dBr

80.000kHz -12.87dBr
                                                                                                   0.00
                                                                                                                 dBr
                                                                                                                 dBr
                                                                    1.0000kHz
1.2500kHz
                                                                                                   0.00
                                 0.03
                                              dBr
                                                                                                                 dBr
                                0.02
0.01
0.00
 50.000 Hz
63.000 Hz
                                              dBr
dBr
                                                                                                                 dBr
                                                                    1.6000kHz
2.0000kHz
                                                                                                    0.00
                                                                                                                 dBr
                                                                                                                 dBr
 80.000 Hz
                                              dBr
 100.00 Hz
125.00 Hz
                                0.00 dBr
0.00 dBr
                                                                    2.5000kHz
3.1500kHz
                                                                                                    0.00 dBr
0.00 dBr
 160.00 Hz
200.00 Hz
                                                                    4.0000kHz
5.0000kHz
                                 0.00 dBr
                                                                                                  -0.01
                                                                                                                 dBr
                                 0.00
                                                                                                 -0.02 dBr
```


8W 10dB of **NFB**

5.0000kHz -0.06 dBr

Frequency response at 8W with and without NFB

```
AGEN FREQ AMPL A
250.00 Hz -0.01 dBr
315.00 Hz 0.00 dBr
                                                                                                              AGEN FREQ AMPL
                                                                                                                                                          Αp
AGEN FREQ AMPL
AGEN FREQ AMPL A
10.000 Hz -3.92 dBr
12.500 Hz -2.67 dBr
16.000 Hz -1.41 dBr
20.000 Hz -0.79 dBr
25.000 Hz -0.53 dBr
31.500 Hz -0.35 dBr
40.000 Hz -0.20 dBr
                                                                                                             6.3000kHz -0.03 dBr
8.0000kHz -0.06 dBr
                                                                                                              10.000kHz -0.08
                                                                                 0.00 dBr
                                                       400.00 Hz
500.00 Hz
                                                                                 0.00
                                                                                            đBr
                                                                                                              12.500kHz -0.11
16.000kHz -0.18
                                                                                                                                                   dBr
                                                       630.00 Hz
800.00 Hz
1.0000kHz
                                                                                0.00
                                                                                            dBr
dBr
                                                                                                                                                   dBr
                                                                                                              20.000kHz -0.29
                                                                                                                                                   dBr
                                                                                                             25.000kHz -0.29 dBr

25.000kHz -0.47 dBr

31.500kHz -0.86 dBr

40.000kHz -1.67 dBr

50.000kHz -3.50 dBr

63.000kHz -7.49 dBr

80.000kHz -15.76dBr
                                                                                 0.00
                                                                                            dBr
50.000 Hz -0.13
63.000 Hz -0.07
80.000 Hz -0.04
                                                       1.2500kHz
1.6000kHz
                                                                                0.00
                                                                                            dBr
                                                                                            dBr
                                      dBr
                                      dBr
                                                        2.0000kHz
                                                                                 0.00
                                                                                            dBr
 100.00 Hz -0.03 dBr
125.00 Hz -0.02 dBr
160.00 Hz -0.01 dBr
                                                       2.5000kHz
3.1500kHz
                                                                                0.00
                                                                                            dBr
                                                       4.0000kHz -0.01 dBr
5.0000kHz -0.02 dBr
                                                                                            dBr
 200.00 Hz -0.01 dBr
```


2,0000kHz 1.68 2.5000kHz 1.66

